15AEE51-POWER SYSTEM OPERATION AND CONTROL

L T P C 3 1 0 3

Course Objectives:

- To learn the concepts of unit-commitment and load scheduling.
- Hydrothermal system scheduling problems.
- To know the single area and two area load frequency control methods.
- To learn the economic interchange between interconnected utilities.
- To explain the importance of reactive power compensation.
- To understand the basics of Restructured Power System.

UNIT - I ECONOMIC OPERATION OF POWER SYSTEMS

Optimal Operation of Generators in Thermal Power Stations - Heat Rate Curve - Cost Curve - Incremental Fuel and Production Costs, Input-Output Characteristics, Optimum Generation Allocation with Line Losses Neglected. Optimum Generation Allocation including the Effect of Transmission Line Losses - Loss Coefficients, General Transmission Line Loss Formula.

UNIT-II HYDROTHERMAL SCHEDULING, MODELING OF TURBINE & GOVERNOR

Optimal Scheduling of Hydrothermal System: Hydroelectric Power Plant Models, Scheduling Problems-Short Term Hydrothermal Scheduling Problem-Modeling of Turbine: First Order Turbine Model, Block Diagram Representation of Steam Turbines and Approximate Linear Models-Modeling of Governor: Mathematical Modeling of Speed Governing System – Derivation of Small Signal Transfer Function – Block Diagram.

UNIT - III LOAD FREQUENCY CONTROL

Necessity of Keeping Frequency Constant-Definitions of Control Area – Single Area Control – Block Diagram Representation of an Isolated Power System – Steady State Analysis – Dynamic Response – Uncontrolled Case-Load Frequency Control of 2-Area System – Uncontrolled Case and Controlled Case-Tie-Line Bias Control. Proportional Plus Integral Control of Single Area and its Block Diagram Representation-Steady State Response – Load Frequency Control and Economic Dispatch Control.

UNIT - IV REACTIVE POWER CONTROL

Overview of Reactive Power Control – Reactive Power Compensation in Transmission Systems – Advantages and Disadvantages of Different Types of Compensating Equipment for Transmission Systems; Load Compensation – Specifications of Load Compensator, Uncompensated and Compensated Transmission Lines: Shunt and Series Compensation.

UNIT - V POWER SYSTEM RESTRUCTURING

Introduction – Need for Regulation – Motivation for Power System Restructuring – Key Issues in Deregulation. Fundamental concepts of SCADA

Bos-chairman

Course Outcomes:

The students will have knowledge on the following concepts:

- Dispatch the load economically among thermal plants.
- Unit commitment problems and solution methods.
- Short term hydrothermal system scheduling problems.
- Model LFC, AGC and AVR for single and two area power systems.
- Fundamental concepts of power system restructuring and SCADA

TEXT BOOKS:

- 1. Power System Analysis Operation and Control A. Chakravarthi and S. Halder, 3rd Edition, PHI.
- 2. Modern Power System Analysis by I.J.Nagrath&D.P.Kothari Tata M Graw Hill Publishing Company Ltd, 2nd edition.

REFERENCE BOOKS:

- An Introduction to: Reactive Power Control and Voltage Stability in Power Transmission Systems by AbhijitChakrabarti, D. P. Kothari, A. K. Mukhopadhyay and Abhinandan De, Eastern Economy Edition, 2010.
- 2. Power System Analysis and Designby J.Duncan Glover and M.S.Sarma., THOMPSON, 3rd Edition.
- 3. Electric Power Systems by S. A. Nasar, Schaum's Outline Series, Revised 1st Edition, TMH.

Bos-chairman